Abstract
Three members of the A- site doped Nb perovskites with general formula Sr3NbO5.5, BaSr2NbO5.5 and Ba2SrNbO5.5 were synthesised by solid-state methods and their removal efficiency of Methyl violet from aqueous solutions investigated. The X-ray diffraction measurements demonstrated that the three samples have a faced cubic perovskite-type structure in space group Fm m. The addition of Ba2+ into the A-site of Sr3NbO5.5 has influenced the cell volume, crystal size and density. Subsequently, the removal capacity was also impacted. The crystallite size of the oxides was determined to be less than 82 nm. The maximum removal capacities of Methyl violet are found to be 46.5, 13.1 and 8.0 mg/g using Ba2SrNbO5.5, BaSr2NbO5.5 and Sr3NbO5.5 respectively. The amounts of the dye adsorbed by the oxides have increased as the Ba2+ content increased. The removals of Methyl violet have positive relationship with pH, temperature and the mass of the oxides.
Author Contributions
Copyright© 2020
A. Awin Labib., et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
The enormous increase in organic water pollution has generated a broad interest in developing new materials for environmental catalysis applications This work studies the removal of Methyl Violet from aqueous solutions using Ba Methyl violet 10B (MV) is known in medicine as Gentian violet and is the active ingredient in a Gram stain, used to classify bacteria The preparation of samples involved Nb2O5 (Merck, 99.99%), SrCO3 and/or BaCO3 (BDH, 99.98-99.99%). The appropriate stoichiometric amounts were mixed, using a mortar and pestle, and then heated in several steps with intermittent regrinding. Samples were initially heated at 850°C for 12 h followed by reheating at 1100°C for 48 h. The crystallography of the samples was examined by a PANalytical X’Pert X-ray powder diffraction using Cu Kα radiation (1.5400 Ȧ) and a PIXcel solid-state detector. The operating voltage was 40kV and the current was 30 mA. The samples were measured in lat plate mode at room temperature with a scan range of 10°<2θ<80° and a scan length of 10 mins were used. The structures were refined using the program RIETICA The absorbance of solutions was determined using ultraviolet visible spectrophotometer (UV/Vis, model Spect-21D) and (190-900 Perkin- Elmer) at maximum wavelength of absorbance (590 nλ). The concentrations of solutions were estimated from the concentration dependence of absorbance fit. The pH measurements were carried out on a WTW720 pH meter model CT16 2AA (LTD Dover Kent, UK) and equipped with a combined glass electrode. Batch mode removal studies were carried out by varying several parameters such as contact time, pH, temperature and mass of prepared oxide (adsorbent). Essentially, a 50 ml of dye solution with concentration of 10 ppm was taken in a 250 ml conical flask in which the initial pH was adjusted using HCl/NaOH. Optimized amount of adsorbent was added to the solution and stirred using magnetic stirrer for specific time. The oxide samples were separated from solutions using centrifuge 3500 CPM for 5 minutes.
Results
Initially, our synthetic attempts focused on Sr3- The Average Crystallite size Dp, specific surface area S, lattice strain φ, Lattice parameter Dp= (0.94λ)/(β1/2×cosϴ). …..(1) S = 6000/ (Dp ×ρ). …..(2) The removal percentage of dyes over the adsorbents can be calculated as: R% = ((Ci-Ct)/Ci) × 100, where R% is the removal percentage, Ci = 10 ppm is initial concentration of dye solution, Ct is the concentration of dye at contact time estimated from the concentration dependence of absorbance fit. The amount of the dye adsorbed by one gram of the oxides (Q) was calculated as following: Q (mg/g) = ((Ci-Ct)×V)/W, where t= 150min is the contact time, V= 50 ml is the volume of MV solution and W is the mass of oxides. As shown in Temperature has an important impact on the adsorption process. An increase in temperature helps the reaction to compete more efficiently with The pH of solutions is a key parameter in dye adsorption. The magnitude of electrostatic charges which are impacted by the ionised dye molecules is controlled by the solution pH. As a result the rate of adsorption will vary with the pH of the medium used. In general, at low solution pH, the percentage of dye removal will decrease for cationic dye adsorption, while for anionic dyes the percentage of removal will increase. This is due to the increase in the positive charge on the solution interface and the adsorbent surface. In contrast, high solution pH is preferable for cationic dye adsorption but shows a lower efficiency for anionic dye adsorption. The positive charge at the solution interface will decrease while the adsorbent surface appears negatively charged. To study the effect of pH, experiments were carried out at various pH values, ranging from 2 to 10 for constant dye concentration (10 ppm) and adsorbent mass (0.1g).
Formula
V (Å3)
Sr3NbO5.5
81.91
5.104
14.35
0.0028
8.3263(3)
577.230(1)
BaSr2NbO5.5
50.45
5.419
22.03
0.0020
8.4554(2)
604.520(1)
Ba2SrNbO5.5
72.72
5.669
14.55
0.0020
8.5999(3)
636.040(2)
Conclusion
The removal of Methyl Violet from aqueous solution using the